

LA-UR-21-22645

Approved for public release; distribution is unlimited.

Title: Structured Membrane-electrode Interface for Highly Efficient PEM Fuel

Cell

Author(s): Yang, Gaoqiang

Intended for: Interview presentation

Issued: 2021-03-17

Structured Membrane-electrode Interface for Highly Efficient PEM Fuel Cell

Gaoqiang Yang

MPA-11, LANL

Conventional Electrode for PEM Fuel Cell

- Random mixture of:
- Pt on C support (catalyst)
- Ion-conducting polymer (ionomer)
- Void space (pore)

- Problem:
- Thick catalyst layer
- Long proton/electron transport pathway
- High mass transport resistance
- Low mass activity

 H_2O

^{1.} Sassin, Megan B., et al. *Anal. Chem.* (2017): 511-518

^{2.} Obermaier, M. et.al . Scientific reports, 8(1), 1-9.

Prior Work: NSTF

Cullen, David A., et al. Journal of Materials Chemistry A 3.21 (2015): 11660-11667.

Debe, Mark K. Ecs Transactions 45.2 (2012): 47-68.

- Whiskers are significantly compressed and deformed, lead to mass transport problem
- Whiskers are compressed into the Nafion membrane, lead to reduction on active reaction sites.
- Limited proton conductive paths in the nano pt-coated whiskers compared to ionomer-containing electrodes.

·Arrayed membrane with Pillars

Approach - Ordered Electrode

- Meso-structured electrode relies on vertically-aligned ionomer channels for long-distance H+ transport and catalyst support
- Catalyzed elements can have reduced ionomer content

*not to scale

Fabrication Process of Ordered Array Electrode

Fabrication Process of the Ordered Array Electrode

Si template

Pillar collapse during catalyst deposition.

Nafion Arrayed pillars

Hot-press with PEM

Dissolving template

Catalyst deposition

Preventing Nafion pillar collapse

- Methods:
- Different forms (H+, Na+, K+)
- Templates with different features
- Different coating methods
- Different deposition parameters
- Pillar length: 10 µm
- Spray coating:
- Ink flow rate: 0.02 ml/min (ultralow)
- Gas flow rate: 0.4 ml/min
- High nozzle-sample distance: 60 cm

Accomplishment #1: Development of a robust method for catalyst deposition with prevention of pillar collapse.

Regular pillar: 15 um for 0.3 mg/cm² loading

- Optimized spraying
- Pillar diameter: 5 um
- Pillar length: 15 um
- Relatively good structure with catalyst

Arrayed membrane in Fuel Cell Test

Arrayed membrane provide a better performance compared to flat membrane

• Patterned membrane provide a smaller HFR, due to the reduced Nafion content in catalyst ink and increased proton transport paths in Nafion pillars.

Co-axial Nanowire Electrode

- CANE relies on vertically-aligned ionomer channels for long-distance H⁺ transport and catalyst support
- Electrode with thin Pt film has reduced ionomer/carbon content

*not to scale

Fabrication Of Co-Axial Nanowire Electrodes

Anode Aluminum Oxide (AAO) Template Atomic Layer Deposition of Pt Film **AAO Template with Pt**

High roughness and high aspect ratio (5-25) utilized

Co-Axial Nanowire Electrodes

 Thicker Pt nanolayer leads to vertical pillars

Co-Axial Nanowire Electrodes

- Higher mass activity and smaller RO2 explain better performance of 5µm7.5nm
- Conventional CCM: 0.18A/mg_{Pt} and 65 m2/g_{Pt}
- 5μm7.5nm has a lowest RO2

Co-Axial Nanowire Electrodes

Pt Height thickness	1 µm	2 µm	5 µm
2.5 nm	33.4	50.9	61.3
5 nm	65.7	110.0	188.7
7.5 nm	102.5	150.1	312.4

- Good performance was achieved by CANEs (5µm 7.5nm)
- However, loading is not the only reason for good performance
 - Similar performance observed from CANEs with different loadings

Backup

Co-Axial Nanowire Electrodes: Different RHs

- 5µm7.5nm provide best performance at 100% RH
- Performance of 5μm7.5nm is reduced at high and low RH (150% and 40%)
- CANE electrodes are sensitive to RH

Co-Axial Nanowire Electrodes: Different RHs

CANE: C-filler

- Sonication procedures: 2min probe + 3h bath
- XC-72 ink with 0.1 I/C
- Carbon concertation: 0.05%
- Catalysts cover pillars

Cross-shape pillar

- Enhancing the strength of the pillar
- Preventing pillar collaps

Cross-shape pillar

45 ug/cm² loading

23 ug/cm² loading

- Different loadings
- No severe collapse is found.
- Catalysts were deposited on the surface

Inverse Array Electrode

Regular Si template with arrayed holes

Reasoning for inverse pillars:

- Better mechanical strength
- Prevention of pillar collapse

Patterned membrane with pillars

Inverse Si template with arrayed pillars

Patterned membrane with inverse pillars

Inverse Array Electrode

Ridge

Si template with ridge

Nafion ridge

- Ridge width: 4.1 um/3.7 um
- Gap width: 2.0um/2.5um
- Ridge height: 13.4 um